Hypoelliptic heat kernel inequalities on Lie groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups

We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with constant growth vector, using the Popp’s volume form introduced by Montgomery. This definition generalizes the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems on unimodular Lie groups we prove that it coincides with the usual sum of squares. We t...

متن کامل

Information-Theoretic Inequalities on Unimodular Lie Groups

Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. These are groups that possess an integration measure that is simultaneously invariant under left and right shifts. All commutative groups are unimodular. And even in noncommutative cases unimodular Lie groups s...

متن کامل

Heat Kernel Analysis on Infinite-dimensional Groups

The paper gives an overview of our previous results concerning heat kernel measures in infinite dimensions. We give a history of the subject first, and then describe the construction of heat kernel measure for a class of infinite-dimensional groups. The main tool we use is the theory of stochastic differential equations in infinite dimensions. We provide examples of groups to which our results ...

متن کامل

Heinz-Kato’s inequalities for semisimple Lie groups

Extensions of Heinz-Kato’s inequalities and related inequalities are obtained for semisimple connected noncompact Lie groups. Mathematics Subject Index 2000: Primary 22E46; Secondary 15A45

متن کامل

SEMINAR ON LIE GROUPS 1. Lie Groups

Example 1.3. (R,+) Example 1.4. S or T n = S × ...× S Example 1.5. Gl (n,F) ⊆ F, where F = R or C Example 1.6. E3 = isometries of R (2 connected components) Let the orthogonal group O3 < E3 be the subgroup that fixes the origin, and let the special orthogonal group SO (3) = SO3 < O3 be the orientation-preserving elements of O3. Visualizing SO (3): Let u be a vector of length l in R, correspondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2008

ISSN: 0304-4149

DOI: 10.1016/j.spa.2007.04.012